Skip to main content

Grounding brush discharge monitoring

In recognition of the possibility of static charge build up in condensing steam turbines, API 612 (2005) specifies that grounding brushes be installed. The electrical flow to ground through these brushes  be monitored and useful information can be extracted.

This article carries excerpts from the paper, “Babbitted bearing health assessment” by John K Whalen of John Crane, Thomas D Hess of Chestnut Run, Jim Allen of Nova Chemicals and Jack Craighton of Schneider Electric.



Grounding brushes take current from the rotor to ground so that a charge does not build up on the rotor to the point where it discharges to ground though the best path possible – which is usually the closest point between the rotor and stator which is usually (hopefully) the point of minimum film thickness in a bearing. Typically this point of minimum film thickness is found in the active thrust bearing (as will be shown later). Shaft grounding brushes serve two purposes. The brushes are able to transmit modest amounts of stray current to ground for prevention of arc damage through parts of the machine (especially the bearings). The brushes also permit measurement of the shaft voltage and current, which allows assessment of the electromagnetic condition of the machine.

There are two types of electrical currents in rotating machines: electrostatic and electromagnetic. Electrostatic currents are primarily generated by impinging particles or droplet atomization (such as in wet stages of steam turbines) and can generally be handled with one grounding brush per shaft. Electrostatic currents usually cause minor damage, such as frosting of bearing babbitt, and the progress of damage is relatively slow. Electromagnetic currents are usually due to residual magnetism and/or stray currents created by electrical machines, such as generators, motors, and exciters. Events such as machinery rubs, improper welding, or lightning strikes can induce residual magnetism in the machine parts and cause the rotating machine to become a generator.

Electromagnetic currents can be extremely destructive. Severe damage can occur rapidly because of high current density. Damage such as burned areas and welding of components are possible. Monitoring to determine shaft current level and changes is performed using a shaft voltage current monitor (VCM). The VCM measures voltage and current through the grounding brushes. Ideally, the output of the VCM should be connected to a recording device or plant data historian so that trends of the voltage and current can be used to detect changes in shaft electrical properties.

If readings increase slowly, it could be an indication of deterioration of the electrical machinery (motor, generator, or exciter) or possible progressive self-magnetization of the machine. Sudden increases in current may indicate that self-magnetization has occurred, possibly due to the reasons previously mentioned.

If readings from the VCM decrease to zero, the grounding brush has most likely lost contact due to wear, or some other part of the brush circuit has opened. More detailed analysis of the shaft currents to determine cause of excessive shaft currents can be performed using an oscilloscope.

Source: https://www.turbomachinerymag.com/view/grounding-brush-discharge-monitoring

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb

Understanding the Types of Maintenance and Choosing the Right Strategy

This article provides an overview of the nine main types of maintenance, ranging from preventive to corrective maintenance and everything in between. Although specific terminology may vary, it's important to ensure that everyone is talking about the same thing and that the underlying principles are clear. Whether you refer to it as condition-based maintenance or predictive maintenance, what matters most is that we can have a meaningful conversation about when and how to use it. As such, this article also explores the appropriate applications of condition-based maintenance. Many people have questions about the different types of maintenance, so this quick overview provides a helpful starting point: There are nine distinct types of maintenance, which can be classified into two main categories: Preventive Maintenance and Corrective Maintenance.   Preventive Maintenance is performed proactively before any equipment failure occurs. This category encompasses: Time-Based Maintenance (TBM)

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause excess