Skip to main content

Turbomachinery failures

BY AMIN ALMASI.

There are many reasons for turbomachinery problems and failures. Resonance, for example, is often overlooked. 

Rotating parts and components such as impellers and blade rows could be in resonance with any excitations generated by turbomachinery. Resonances for the first and second natural frequencies can be dangerous. Generally, there could be numerous cases of resonance. The second natural frequency of a rotating component, in one example, proved to be almost exactly an integer multiple of the first natural frequency. This led to excitation and operational problems. Fluid-induced vibration, oscillatory changes of fluid pressure, and turbulent flow (vortex formation) might also cause high vibration or even failure. 

Fatigue, too, is often a root cause in failures of rotating parts. Individual stress amplitudes should be analyzed to ensure associated components will not fail due to different forms of fatigue such as high-cycle fatigue (HCF) and low-cycle fatigue (LCF). 

For shaft failures, the reasons behind failures can be broken down into: 

1. Mechanical: such as overhung/bending/ torsional/axial load. 

2. Dynamic: vibration, cyclic, shock. 

3. Residual: manufacturing/repair processes. 

4.Thermal: temperature gradients, rotor bowing. 

5. Environmental: corrosion, moisture, erosion, wear, cavitation. 

Before the root cause of a shaft failure can be determined, it is necessary to understand shaft loadings and stresses. The ability to characterize the microstructure and surface topology of a failed shaft is critical. Visual inspection, optical scanning, electron microscopes, and metallurgical analysis can be used, for example. 

(source: r-e-v.co.uk)

Many failures can be diagnosed using a fundamental knowledge of shaft failure causes and visual inspections. This can later be confirmed through a metallurgical laboratory or other methods.

Based on case studies from several plants, the main reasons for shaft failure are: corrosion (35%), fatigue (32%), brittle fracture (16%), overload (11%), and creep/wear/erosion/abrasion (6%). Some studies found fatigue responsible for more than 50% of failures. Therefore, pay attention to surface discontinuities such as keyways, steps, shoulders, collars, threads, holes, snap ring grooves, and shaft damage or flaws. 

Keyway regions are often problematic. Keyways are commonly used to secure rotating components, rotor cores, and couplings to the shaft. The take-off end (or drive/driven end) is where the highest shaft loading occurs. Fatigue cracks usually start in the fillets or roots. A keyway that ends with sharp step(s) has higher stress concentration than one using a sled-runner type. In the case of heavy shaft loading, cracks frequently emanate from sharp steps. Avoid connections using keys if possible. If it can’t be avoided, obtain a sufficient edge radius. 

Fatigue-related failures usually follow the weakest-link theory: Fatigue leads to an initial crack on the surface; cracks propagate until the shaft cross-section is too weak to carry the load; and finally, a sudden fracture occurs. 

Remember that residual stresses or initial defects/deflections could be independent of external loadings. There are manufacturing or repair processes that can affect residual stresses, initial deflections, and defects. These include: drawing, bending, straightening, machining, grinding, surface rolling, shot blasting, and polishing. They can produce residual stresses and defects by plastic deformation. And thermal processes such as hot rolling, welding, torch cutting, and heat treating can lead to problems. 

Finally, shaft fretting can cause serious damage. Typical locations are points on the shaft where a press or slip fit exists. The presence of rust between mating surfaces helps confirm fretting took place due to movement between mating parts. Once fretting occurs, the shaft can become sensitive to fatigue cracking. Shaft vibration can worsen this situation.


Turbomachinery International

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

Top 8 Reasons for Mechanical Seal Failure and How to Prevent Them

Mechanical seals are critical components of pumps, responsible for maintaining a fluid-tight seal between the rotating shaft and the stationary pump housing. However, these seals can fail due to various factors, leading to leakage, reduced pump efficiency, and costly downtime. In this article, we will discuss the top reasons for mechanical seal failure in pumps and how to prevent them. 1-Improper Seal Selection Choosing the wrong mechanical seal can cause it to fail. Consider the following factors that can contribute to seal failure: • Chemical compatibility: All seal components, such as the seal faces and O-rings, must be compatible not only with the process fluid being pumped, but also with non-process fluids used for cleaning, steam, acid, and caustic flushes, etc. • Physical degradation: Using soft seal faces on abrasive liquids will not last. Shear-sensitive liquids, like chocolate, can break down and leave behind solids (such as cocoa powder) and force out liquids (like oil). • S

Understanding the Types of Maintenance and Choosing the Right Strategy

This article provides an overview of the nine main types of maintenance, ranging from preventive to corrective maintenance and everything in between. Although specific terminology may vary, it's important to ensure that everyone is talking about the same thing and that the underlying principles are clear. Whether you refer to it as condition-based maintenance or predictive maintenance, what matters most is that we can have a meaningful conversation about when and how to use it. As such, this article also explores the appropriate applications of condition-based maintenance. Many people have questions about the different types of maintenance, so this quick overview provides a helpful starting point: There are nine distinct types of maintenance, which can be classified into two main categories: Preventive Maintenance and Corrective Maintenance.   Preventive Maintenance is performed proactively before any equipment failure occurs. This category encompasses: Time-Based Maintenance (TBM)

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb

Why Pump Shafts Often Break at the Keyway Area

By NTS Pump shaft failure can lead to significant downtime and repair costs in industrial plants. One of the most common locations for pump shaft failure is at the keyway area. In this article, we will explore the reasons why pump shafts often break at the keyway and what can be done to prevent such failures. The keyway is a high-stress point (weakest point)  on the shaft, where a key is inserted to transmit torque between the shaft and the pump impeller or coupling. During operation, the keyway experiences cyclic loading that creates a bending moment in the shaft, which is concentrated in the keyway area. Over time, this cyclic loading can cause fatigue failure in the shaft material, leading to a fracture at the keyway. In addition to cyclic loading, other factors can contribute to shaft failure at the keyway. Improper keyway design or installation can lead to stress concentrations or inadequate clearance between the key and keyway . Misalignment or overloading can also cause excess